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ABSTRACT

We propose a control architecture for distributed coordination of a

collection of on/off TCLs (thermostatically controlled loads), such

as residential air conditioners, to provide the same service to the

power grid as a large battery. This involves a collection of loads to

coordinate their on/off decisions so that the aggregate power con-

sumption profile tracks a grid-supplied reference. A key constraint

is to maintain each consumer’s quality of service (QoS). Recent

works have proposed randomization at the loads. Thermostats at

the loads are replaced by a randomized controller, and the grid

broadcasts a scalar to all loads, which tunes the probability of turn-

ing on or off at each load depending on its state. In this paper we

propose a modification of a previous design by Meyn and Bušić.

The previous design by Meyn and Bušić ensures that the indoor

temperature remains within a pre-specified bound, but other QoS

metrics, especially the frequency of turning on and off was not lim-

ited. The controller we propose can be tuned to reduce the cycling

rate of a TCL to any desired degree. The proposed design is com-

pared against the design by Meyn and Bušić and another well cited

design in the literature on control of TCL populations, by Mathieu

et al. We show through simulations that the proposed controller

is able to reduce the cycling of individual ACs compared to the

previous designs with little loss in tracking of the grid-supplied

reference signal.
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1 INTRODUCTION

Reliable operation of the power grid requires balancing demand

and supply of power at all time scales. The time variation and

unpredictability of renewable energy sources such as solar and

wind make it challenging. Apart from expensive batteries, a com-

plementary and inexpensive possibility is to harness the inherent

flexibility in demand of many types of loads. Loads have been used

for Demand Response (DR) for a long time, which is traditionally

meant as a temporary reduction in demand to help the grid. It is

recognized now that loads can supply a range of services to the

grid beyond DR [1, 14]. With appropriate control, loads can vary

their demand up and down around a baseline so that the deviation

from the baseline appears like the charging and discharging of a

battery to the grid. We call this Virtual Energy Storage (VES) from

smart loads. A key constraint in using loads to provide any kind

of grid-support service is that consumer’s quality of service (QoS)

must not be compromised.

The topic of this paper is design of the control architecture for

a collection of thermostatically controlled loads (TCLs) to provide

VES while maintaining strict bounds on the consumers’ QoS. TCLs

include residential air conditioners (ACs), water heaters, refrigera-

tors etc. We focus on residential ACs that are on/off type; meaning

their power consumption can only take two values: zero and a

positive constant. For ACs, there are at least two primary measures

of consumer’s QoS: indoor temperature and cycling frequency. Cy-

cling frequency refers to the number of times a load turns on and off

in a given period. Short-cycling, which refers to frequent turning

on and off, is to be avoided since that can damage equipment.

The problem is challenging on many counts. First is computa-

tional complexity. A thousand on/off loads means at any instant

there are 210
3
possible decisions. Due to QoS constraints that make

current decisions dependent on the past, the decision space is even

bigger. Second, since loads are distributed geographically over a

large area and QoS constraints are local, the control architecture

must be non-centralized. However, loads’ actions must be coordi-

nated so that together they deliver the service that the balancing

authority (BA) asks for.

There is a large and growing literature on coordination of col-

lections of TCLs. Several distinct heuristics have been developed to

address computational complexity. One control approach is for the

BA to broadcast a common thermostat set point change [2, 5, 10, 18].

The control signal is decided based on amodel with set point change

as input and aggregate power consumption as output. A limita-

tion of this approach is that the control relies on extremely small
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these competing designs, with little or no loss in performance in

tracking the BA supplied reference.

2 PROBLEM FORMULATION: NEEDS OF THE
GRID

The BA needs resources to provide the net load, d̃k , (wherek denotes

the discrete time index) which is the difference between the baseline

demand and renewable generation. The baseline demand is the

demand when the loads are not providing any grid-support service,

i.e., there is no interference from the grid on power demand of the

loads.

The slowly-varying component of the net load is ideally provided

by conventional generators that have limited ramping ability. This

component, denoted by d̃LP
k

can be obtained by low-pass filtering

the net-load. The remainder is denoted by d̃HP
k
= d̃k − d̃

LP
k
. This

"high-pass" component is zero-mean, and can be provided by VES

and actual energy storage. A variant of this methodology is used

by many BAs today; the d̃HP
k

is provided by fast moving generators,

flywheels, and batteries.

In BPA (Bonneville Power Administration), a BA in the pacific

northwest with a high share of wind penetration, the balancing

reserve is close to the signal d̃HP
k

. An example of BPA’s balancing

reserve signal is shown in Figure 2. The data is obtained from

http://tinyurl.com/ybslqh8w.
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Figure 2: Illustration of storage requirement d̃HP
k

(BPA’s bal-

ancing reserve). The reference rk is obtained by filtering the

balancing reserve signal.

Loads providing VES can be characterized by the frequency of

demand variation they can tolerate without violating QoS con-

straints [9, 11, 12, 17]. Therefore, an appropriate reference signal

for the collection of ACs to track, denoted by P̃r ef (z), can be ob-

tained by bandpass filtering the signal P̃r ef (z) = FBP (z)d̃
HP (z),

where FBP (z) is a bandpass filter, P̃
r ef (z) is the reference signal

measured in Watt (or kW, MW, GW etc.), and z is the z-transform

variable. The passband of FBP (z) must be chosen according to the

ability of the aggregate. To determine the appropriate passband, the

BA needs knowledge of the frequency response of the collection of

loads. We describe in Section 4.2.1 how frequency response of the

collection of ACs, can be identified, with ζ as input and total power

consumption deviation (from the baseline) as output. The passband

is then chosen to be range of frequencies in which the aggregate

model has high gain and small phase lag. An example of a filtered

signal, P̃r ef (z), with passband appropriate for a collection of AC’s

is shown in Figure 2.

Let the power consumption of the collection of loads be denoted

by Pk , and P
∗
k
be the value of Pk in the baseline scenario (no inter-

ference from the BA). The deviation of the total power consumption

of all the loads is P̃k := Pk − P
∗
k
. The control problem for the BA is a

tracking problem: P̃k should track the reference P̃
r ef

k
. Furthermore,

the BA should only provide a reference that the loads can track.

The frequency content of the reference signal P̃
r ef

k
is only a nec-

essary condition for successful operation. The collection of loads

additionally have power and energy constraints, like a battery, that

need to be respected. Reference signals that exceed the value of

power consumption when all loads are on (power constraint), or

require to fast a consumption rate (energy constraint) will result in

poor tracking or violation of individual ACs QoS.

3 LOCAL CONTROL AT THE AC’S, AND
AGGREGATE BEHAVIOR

3.1 Dynamic model of indoor temperature

Consider an AC with prated being the rated electrical power con-

sumption. A simple model of the indoor temperature θ is, θ̇ (t ) =

− 1
RC θ +

−q0
C qac (t ) +w (t ). wherew (t ) := 1

RC θa (t ) +
1
C qint (t ) is a

time varying disturbance with θa the ambient temperature and qint
the internal cooling load, R is the resistance to heat flow offered

by the building structure and C is the thermal capacitance of the

building. The term qint captures both occupant induced heat gain

and solar heat gain. The qac (t ) is the heat injected into the building

by the AC. The control signal u (t ) is binary: it can be either 1 (on)

or 0 (off). Denoting by q0 := COPprated the rated thermal power

consumption of the AC, COP being its coefficient of performance,

qac (t ) = −q0 if u (t ) = 1 and qac (t ) = 0 if u (t ) = 0. We now have

the binary discrete control signal uk : 1 when on and 0 when off.

The power consumption of the AC (in kW) is prateduk .

3.2 Deterministic control (Thermostat)

The control logic in a thermostat that operates a residential AC is

usually based on a deadband (δ ) around a user-specified set point

(θset ). The AC is turned on if the measured indoor temperature

exceeds the upper limit θmax = θset + δ and turned off if the

temperature drops below the lower limit θmin = θset − δ . When

θ (t ) is between θmin and θmax, the previous decision (on or off) is

maintained. This control strategy is deterministic: the on/off status

of the AC at k + 1 is a function of the temperature and on/off status

at k : uk+1 = uk+1 (θk ,uk ).

3.3 Randomized control basics

In randomized control [4, 7], the mapping u (θk ,uk ) 7→ uk+1 is no

longer deterministic; it takes the two possible values (0 and 1) with

certain probabilities. First define a state space for the AC. Every

element x of the state space X is a pair, x = (u,θ ), where u ∈ {0, 1}

is the łmodež (either on or off) and θ ∈ R is the temperature of the

house. For a state x ∈ X, we denote by xu the mode and xθ the

temperature θ . In the sequel, we use ⊕ and ⊖ interchangeably with

1 and 0, respectively, as it is more intuitive for on and off.

A randomized controller is a rule to determine the probabilities

of xu
k+1

being 0 or 1 given the knowledge up to the current time,
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Consider the usual heating scenario, when the AC has been off

and temperature is increasing. Then, at time k , the probability of

switching on is

p⊕ (k ) := P(Xu
k
= 1|Xu

k−1 = 0,Xu
k−2 = 0, . . . )

= P(θ+ ≤ θk |θ
+ > θk−1)

=

P(θk−1 < θ+ ≤ θk )

P(θ+ > θk−1)

=

F ⊕ (θk ) − F
⊕ (θk−1)

1 − F ⊕ (θk−1)

Additionally for a cooling scenario, when the AC has been on

and the temperature is decreasing. Then, at time k , the probability

of switching off is

p⊖ (k ) := P(Xu
k
= 0|Xu

k−1 = 1,Xu
k−2 = 1, . . . )

= P(θ− ≥ θk |θ
− ≤ θk−1)

=

P(θk < θ− ≤ θk−1)

P(θ− ≤ θk−1)

=

F ⊖ (θk−1) − F
⊖ (θk )

F ⊖ (θk−1)

where F ⊕/F ⊖ is the CDF of the r.v. θ+/θ−. Notice that in both

scenarios we have assumed (third line) that temperature has been

increasing while off (decreasing while on), so that θk−1 < θk (θk <

θk−1). To ensure positivity of probabilities under all scenarios, e.g.,

if temperature decreases (increases) when AC is off (on), we use

p⊕ (k ) =
[F ⊕ (θk ) − F

⊕ (θk−1)]+
1 − F ⊕ (θk−1)

p⊖ (k ) =
[F ⊖ (θk−1) − F

⊖ (θk )]+
F ⊖ (θk−1)

. (2)

where [x]+ = max(x , 0). The two CDF’s appearing in (2) are

additional design choices and are taken from [4] as,

F ⊕ (z) = exp(−(θmax − z)
ρ/(2σ ρ ))

F ⊖ (z) = 1 − F ⊕ (θmax + θmin − z) (3)

where ρ and σ are design parameters. In this paper we use ρ = 0.75

and σ = 0.02.

With the previous developments the baseline (nominal) control

law, R0 (x ,y
u ), can be stated explicitly as:

R0 (x , 1) = P
(

Xu
k
= 1|Xk−1 = x

)

=


p⊕ (xθ ), xu = ⊖

1 − p⊖ (xθ ), xu = ⊕
(4)

R0 (x , 0) = P
(

Xu
k
= 0|Xk−1 = x

)

=


p⊖ (xθ ), xu = ⊕

1 − p⊕ (xθ ), xu = ⊖
(5)

With abuse of notation (state augmentation is required to illustrate

the 1st order Markov property) the control law (when ζ , 0),

proposed in [4, 7], is the myopic policy:

Rζ (x ,y
u ) = R0 (x ,y

u ) exp(ζU (yu ) − Λζ (x )) (6)

whereU (·) is the utility function:

U (x ) = U (xu ) =

1 xu = ⊕

0 xu = ⊖
(7)

andΛζ (x ) is the normalization constant tomake the probabilities

sum to 1.

This translates to switching probability functions for ζ , 0:

p⊕
ζ
(k ) =

p⊕ (k ) exp(ζ )

exp(Λζ (x ))

p⊖
ζ
(k ) =

p⊖
ζ
(k )

exp(Λζ (x ))
(8)

The developments of this section are referred to as the Meyn &

Bušić - Randomized Control (MB-RC) [4, 7]. Notice that the con-

troller uses info from the past two time instances, so to represent it

as a Markov operator we need to augment the state. We avoid doing

so here to prevent the notation from becoming too cumbersome.

3.5 Proposed local controller: CARC

In this paper we propose a change to the local randomized con-

troller (6) to ensure that the AC unit does not cycle excessively.

We coin this new design as the Cycling Aware Randomized Con-

trol (CARC) Algorithm. To describe the CARC algorithm, we first

introduce a function f (.) : {xu }k
k−τ−1

7→ ℜ+, which is defined as:

f ({xu }k
k−τ−1) = exp *

,
−α

τ
∑

t=0

|x
(i ),u

k−t
− x

(i ),u

k−t−1
|+
-

(9)

for k > τ , where τ is a horizon window and α is a decay rate. Both

τ and α are design variables. This function, f (.), multiplicatively

effects ζ leading to the CARC randomized local control law:

Rζ (x ,y
u ) = R0 (x ,y

u ) exp(ζ f ({xu }k
k−τ−1)U (yu ) − Λ̄ζ (x )), (10)

where R0 (x ,y
u ) andU (yu ) are the same as defined previously for

the MB-RC algorithm, and Λ̄ζ (x ) is a normalizing constant.

Both CARC and MB-RC share the same nominal design (when

ζ = 0). The CARC algorithm effectively reduces the magnitude of

ζ locally if it detects that the AC has already cycled quite a few

times, and thus avoids excessive cycling. This is achieved through

the design of the decaying exponential in (9). If an AC unit begins

to cycle excessively, the summand in (9) will be large and in turn

f (.) will be small, and so the product f (·)ζ will be small as well.

This causes the unit to behave close to nominal operation; as if the

ζ broadcast by the BA were 0. If the AC has not cycled many times

within τ then the summand in (9) will be zero, f (·) will be one, and

the scaling will have no effect.

The success of the CARC algorithm in ensuring that cycling

frequency does not increase much more than what the thermo-

stat controller would do without any interference from the grid

is an appropriate nominal (baseline) design. The baseline random-

ized controller (when ζ = 0) in our design behaves similarly to a

thermostat (see Figures 3- 5) in Section 3.3).

To execute the proposed control algorithm at anAC, it needs to be

able to receive the broadcast ζk from the BA. It also needs its on/off

state and the indoor temperature, which are local measurements. No

other information is needed. The computations involved are quite
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simple and can be performed with the help of a random number

generator and a look up table of the switching probabilities.

3.6 Aggregate behavior of N ACs with local
randomized control

Let µk be the pdf (defined over the state space X) of the state of

an AC when it operates according to the randomized control law

described in Section 3.4 or Section 3.5. The pdf (left) and the relevant

output, the probability, at time k , of the state being in the łonž mode,

(right) evolve according to

µk+1 = µkPζk ,wk
γk := P(xu

k
= ⊕) =

∫

R⊕
µkdx , (11)

As a system with inputs ζ ,w and output γ , (11) is an infinite

dimensional dynamic system that is linear in the state but nonlinear

in the inputs. To make the connection between the individual and

the aggregate, consider N homogeneous loads operating under the

same randomized policy and subject to the same inputs (ζk ,wk ).

Define the fraction of loads that are on at k:

y
(N )

k
:=

1

N

N
∑

i=1

U (x
(i )

k
) (12)

We assume a mean-filed limit holds (proven for a similar setting

in [17]). That is, if N homogeneous loads are subjected to the same

inputs ζ andw , as N → ∞ the fraction of loads that are on at time

k approaches the probability of a single load being on at k :

lim
N→∞

y
(N )

k
= γk (13)

In the sequel, for simplicity we drop the superscript N from all quan-

tities that contain an average over N .

4 DECISION MAKING AT THE BA

The control problem faced by the BA was discussed in Section 2.

We now pose the problem more precisely and connect it to the

aggregate behavior described above.

4.1 The tracking problem

When ζk ≡ 0 andwk ≡ w , then γk reaches a constant steady state

value as k → ∞, which we denote by γ ∗ (w ). In other words, γ ∗ (w )

is the fraction of the loads that are on at steady state for a constant

disturbancew under baseline randomized control. We now define

the deviation signal γ̃k := γk − γ
∗ (wk ).

When the system is operating in baseline conditions, i.e., ζk ≡ 0,

but with a time-varying disturbance, then γk = γ
∗ (wk ) at every k

if the response of the aggregate to the disturbance is instantaneous.

Assuming such a speedy response, we have γ̃k ≡ 0 for baseline

operation. When ζk ≡ ζ > 0 then γ̃k converges to a positive

value that is larger for larger ζ . This follows from the design of the

controlled transition probability operator Rζ that was described in

Section 3.3. Similarly, if ζk ≡ ζ < 0 then γ̃k converges to a negative

value that is smaller for smaller ζ .

Recall yk defined in (12); the empirical counterpart to γk . We

similarly define the empirical counterparts to γ ∗ (w ) and γ̃k , and

call them y∗ (w ) and ỹk . Therefore,

ỹ = yk − y
∗
k
. (14)

Assuming the mean field limit holds, y∗ (w ) → γ ∗ (w ) and ỹk → γ̃k
as N → ∞.

Recall the tracking objective from Section 2: the power consump-

tion deviation of the collection P̃k should track an exogenous refer-

ence signal P̃
r ef

k
. When the loads are homogeneous, P̃k = Pk −P

∗
k
=

Nprated (yk − y
∗
k
) = Npratedỹk . The problem is then equivalent to

ỹk tracking the normalized reference rk := 1
Nprated

P̃
r ef

k
. Because of

the mean field limit, ỹk tracking rk is (approximately) equivalent

to γ̃k tracking rk . For the BA, the control design problem can be

posed in terms of a single load: choose the control command ζk so

that the deviation probability γ̃k of a load tracks the normalized

reference rk .

4.2 Computing rk , the reference for the
collection

4.2.1 Frequency response of a collection of ACs. In order to ob-

tain the passband for the bandpass filter described in Section 2,

the frequency response of the collection of AC’s with ζk as the

input and ỹk as the output, Gζ ỹ (e
jΩ ), needs to be computed. This

frequency response represents the linear approximation to the non-

linear mean field model around an equilibrium point, and because

of the mean field limit the approximation will predict the change

in the fraction of ACs on, ỹk , over baseline, y
∗
k
, due to ζk .

In order to estimate the frequency response, the collection of

AC’s is simulatedwith a constant disturbance,w∗, and a zeromean ζ .

This corresponds to estimating a model about the equilibrium point

(ζ = 0,w = w∗). The corresponding normalized power deviation,

ỹk , is recorded and used along with the elected inputs to compute

the Empirical transfer function estimate (ETFE). The ETFE can be

used to fit a discrete time transfer function. The results of this

estimation procedure, for loads with the CARC algorithm and with

MB-RC, are shown in Figure 8. It can be observed that the frequency

response of the aggregate is not effected by the introduction of the

local QoS constraint.

4.2.2 Computing the Baseline power P∗
k
. Recall, the tracking

objective for VES is for a collection of AC’s to track an exogenous

reference signal (P̃
r ef

k
) that represents power deviation from base-

line consumption (P∗
k
). Baseline consumption represents the power

consumption that would have occurred under no VES. In order to

compute the baseline power consumption, the collection of AC’s

are simulated, each equipped with the local randomized controller,

with ζk = 0 ∀k , and the exogenous disturbance trajectory, which

can be obtained from weather forecasts. This requires a prediction

of the disturbance for the desired time horizon. We assume the

ability to predict the disturbance accurately 1 day ahead, which

is reasonable as some studies have done predictions months in

advanced [19], and BA’s frequently use such demand forecasts.

The baseline consumption for the control experiments is shown in

Figure 6.

4.2.3 Computing the Capacity ck . Under time varying weather

conditions, the magnitude of trackable references is also time vary-

ing. This is illustrated in Figure 6, observe at 6 AM only 20% of the

AC units are on. Clearly it is impossible to turn off more than 20%

additional units, and any reference that has a value in excess of
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Figures 12 -13 (bottom). To test if the CARC algorithm has reduced

short cycling, the minimum time between successive switches is

computed for each AC (Figures 12 -13 (middle) ). From these fig-

ures it is clear that the CARC Algorithm improves the minimum

cycling time over both MB-RC and MKC-PS. In row 2 of Table 2,

the minimum time between mode switches, searched over all ACs,

is displayed. It is found that the CARC algorithm quadruples the

minimum mode switching time when compared to MKC-PS and

doubles when compared to MB-RC.

In addition to short cycling, the total number of switches an AC

undergoes is investigated. The histogram illustrating total number

of switches, computed over all ACs, is shown in Figures 12 -13 (Top).

Between CARC and MB-RC the difference in the total number of

switches is negligible. Although the AC with the greatest number of

mode switches, under the CARC algorithm, switches once less than

MB-RC (Table 2). Recall, that these experiments are performed over

one day, so under similar daily conditions this would mean ≈ 30

less switches per month and ≈ 360 less switches a year. Comparing

against MKC-PS the CARC algorithm drastically decreases the

number of mode switches over all AC units.

6 CONCLUSION

Randomized control at the loads addresses many of the limitations

of previous approaches to distributed coordination of TCLs, in-

cluding issues of synchronization and computational complexity.

It enables the BA to manipulate aggregate power consumption of

a collection of ACs by broadcasting a single scalar to all ACs. The

local randomized controller maintains the indoor temperature.

In this paper we leveraged the randomized control philosophy

espoused in [3, 4, 7, 17] and extended it to also enforce the indi-

viduals cycling QoS constraint. We achieved this by adding local

intelligence that forces a load to revert back to baseline behavior

when it would otherwise cycle excessively because of the command

from the BA.

The three control strategies, MKC-PS, CARC, and MB-RC, are

all able to achieve similar reference tracking results. However, the

CARC design is able to reduce cycling compared to MB-RC and

MKC-PS design at little to no cost in tracking error.

A natural extension for future work is to incorporate a feed-

forward component to the control system, so that errors in baseline

prediction and reference signal generation can be systematically

handled. The current control systems assumes that baseline power

consumption and reference signal are known accurately.

Another path for future work is to propose a mechanism to

preserve the individuals’ privacy. The control architecture requires

measurement of total power consumption of all the ACs taking part.

Here we assumed that each AC sends on/off state information to

the BA at every sampling period (5 minutes). It may be possible to

infer patterns about individuals from this data that individuals may

wish to keep private. A proposal in this direction is to randomly

sample a small percentage of the total population to estimate the

total power consumption [6], which shows good performance.
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